Ab Initio Study of Superalkalis. First Ionization Potentials and Thermodynamic Stability

Eva Rehm, Alexander I. Boldyrev,[†] and Paul von R. Schleyer^{*}

Institut für Organische Chemie, Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestrasse 42, 8520 Erlangen, Germany

Received January 31, 1992

The equilibrium geometries and fundamental frequencies of the Li₂F⁺, Li₂F, Na₂Cl⁺, Na₂Cl, Li₂O, Li₃O⁺, Li₃O, Li₂S, Li₃S⁺, Li₃S, Na₂O, Na₃O⁺, Na₃O, Li₃N, Li₄N⁺, Li₄N, Li₃P, Li₄P⁺, and Li₄P species were calculated at MP2-FULL/6-31+G^{*}. The total energies at these geometries were calculated at the MP4SDTQ and QCISD(T) levels with the 6-31+G^{*}, 6-311+G^{*}, and 6-311+G(2df) basis sets. The global minima are as follows: linear Li₂F⁺, Na₂Cl⁺, Na₂O ($D_{\infty h}$, ¹Σ⁺); angular Li₂O, Li₂S ($C_{2\nu}$, ¹A₁) and Li₂F, Na₂Cl ($C_{2\nu}$, ²A₁); planar Li₃O⁺, Li₃S⁺, Na₃O⁺, Li₃N (D_{3h} , ¹A₁') and Li₃O, Na₃O (D_{3h} , ²A₁'); pyramidal Li₃P ($C_{3\nu}$, ¹A₁) and Li₃S ($C_{3\nu}$, ²A₁); tetrahedral Li₄N⁺, Li₄P⁺ (T_d , ¹A₁) and Li₄N (T_d , ²A₁); distorted tetrahedral Li₄P ($C_{2\nu}$, ²A₁). All cationic and neutral species are stable toward loss of alkali metal cation M⁺ or alkali metal atom M, respectively. All Li₂F, Na₂Cl, Li₃O, Li₃S, Na₃O, Li₄N, and Li₄P species possess lower first ionization potentials (FIP) than the Cs atom (3.9 eV) and therefore are termed "superalkalis".

Introduction

Among all chemical elements the alkali metals possess the lowest ionization potentials (IP (in eV)): Li, 5.39; Na, 5.14; K, 4.34; Rb, 4.17; Cs, 3.89.¹ However, in the last 15 years many stable molecules with even lower IPs have been identified. These alkali metal clusters^{2.3} and hyperalkali molecules ML_{k+n} (where L is an alkali metal atom, k the normal valency of the central atom M, and $n \ge 1$)^{4.5} may be considered to be "superalkaline".^{5b,f} Among the small alkali metal clusters, triatomic combinations have the lowest IPs (e.g. Li₂ = 4.86, Li₃ = 4.35, Li₄ = 4.69, Li₅ = 4.56, and Li₆ = 4.67 eV²ⁱ). Similarly, hyperalkali molecules ML_{k+n} with n = 1 have the lowest IPs (e.g. NaO = 6.5, Na₂O = 5.06, Na₃O = 3.90, and Na₄O = 3.95 eV^{4c}). Such superalkali molecules may serve as components of new nontraditional salts, for instance ML_{k+1} ⁺X⁻ with ML_{k+1} ⁺ cations (e.g. Li₃O⁺, Li₄N⁺, etc.). Moreover, the low IP of ML_{k+1} species may allow the

[†] Permanent address: Institute of Chemical Physics, Russian Academy of Sciences, Kosygin Str. 4, Moscow v-334, Russia.

- (2) (a) Hart, A.; Goodfried, P. L. J. Chem. Phys. 1975, 62, 1306. (b) Wu, C. H. J. Chem. Phys. 1976, 65, 3181. (c) Herrmann, A.; Schumacher, E.; Wöste, L. J. Chem. Phys. 1978, 68, 2327. (d) Kappes, M. M.; Kunz, R. W.; Schumacher, E. Chem. Phys. Lett. 1982, 91, 413. (e) Peterson, K. I.; Dao, P. D.; Farley, R. W.; Castleman, A. W., Jr. J. Chem. Phys. 1984, 80, 1780. (f) Brechignac, C.; Cahuzac, Ph. Chem. Phys. Lett. 1985, 117, 365. (g) Broyer, M.; Cheveleyre, J.; Delacretaz, D.; Fayet, P.; Wöste, L. Chem. Phys. Lett. 1985, 114, 477. (h) Saunders, W. A.; Clemenger, K.; de Heer, W. A.; Knight, W. D. Phys. Rev. 1985, B32, 1366. (i) Brechignac, C.; Cahuzac, Ph.; Roux, J. Ph. Chem. Phys. Lett. 1986, 127, 445. (j) Wu, C. H. J. Chem. Phys. 1989, 91, 546.
- 1366. (i) Brechignac, C.; Canuzać, F.H.; Roux, J. F.H. Chem. Phys. Lett. 1986, 127, 445. (j) Wu, C. H. J. Chem. Phys. 1989, 91, 546.
 (3) (a) Chou, M. Y.; Cleland, A.; Cohen, M. L. Solid State Commun. 1984, 52, 645. (b) Chou, M. Y.; Cohen, M. L. Phys. Lett. 1986, 113A, 420.
 (c) Ishii, Y.; Ohnishi, S.; Sugano, S. Phys. Rev. 1986, 33B, 5271. (d) Koutecky, J.; Fantucci, P. Chem. Rev. 1986, 86, 539. (e) Knight, W. D.; De Heer, W. A.; Sauders, W. A.; Clemenger, K.; Chou, M. Y.; Cohen, M. L. Chem. Phys. Lett. 1987, 134, 1. (f) Boustani, I.; Pewestorf, W.; Fantucci, P.; Bonacic-Koutecky, V.; Koutecky, J. Phys. Rev. 1987, 35B, 9437. (g) Bonacic-Koutecky, V.; Boustani, I.; Guest, M.; Koutecky, J. J. Chem. Phys. 1988, 89, 4861. (h) Spiegelmann, F.; Pavolini, D. J. Chem. Phys. 1988, 89, 4954. (i) Bonacic-Koutecky, V.; Fantucci, P.; Koutecky, J. Phys. Rev. 1988, 37B, 4369.
 (4) (a) W.; C H.; Kude, H.; Libe, H. P., J. Chem. Phys. 1970, 76, 1015.
- Koutecky, J. Phys. Rev. 1988, 37 B, 4369.
 (4) (a) Wu, C. H.; Kudo, H.; Ihle, H. R. J. Chem. Phys. 1979, 70, 1815.
 (b) Peterson, K. I.; Dao, P. D.; Castleman, A. W., Jr. J. Chem. Phys. 1983, 79, 777.
 (c) Dao, P. D.; Peterson, K. I.; Castleman, A. W., Jr. J. Chem. Phys. 1984, 80, 563.
 (d) Wu, C. H. Chem. Phys. 1984, 80, 563.
 (e) Kuan, T.-C.; Jiang, R.-C.; Su, T.-M. J. Chem. Phys. 1990, 92, 2553.
 (f) Kudo, H.; Wu, C. H. Chem. Express 1990, 5, 633.
 (g) Pollack, S.; Wang, C. R. C.; Kapes, M. M. Chem. Phys. Lett. 1990, 175, 209.
 (h) Kudo, H.; Zmbov, K. F. Chem. Phys. Lett. 1991, 187, 77.

synthesis of new salts $ML_{k+1}^+X^-$ in which corresponding neutral atoms or molecules X possess low electron affinities (AE).

The IPs of Li₂F, Li₂Cl, Na₂F, Na₂Cl, Cs₂F, Cs₂Cl, Li₃O, Li₃S, Na₃O, Na₃S, Li₄N, Li₄P, Na₄N, and Na₄P were investigated theoretically by the discrete-variational-X α (DV-X α) method using the Slater-transition approximation (IPs were computed with $n_{\rm HOMO} = 1/2$).^{5b,f} These calculations were carried out at the equilibrium geometries of the corresponding cations, and the IPs of the ML_{k+1} radicals were assumed to be equal to the vertical EA values of the ML_{k+1}^+ cations. All calculated IPs were found to be 3.7 eV or lower and thus less than the IPs of alkali metal atoms. However, due to the limitations in the DV-X α theory, the calculated IPs were usually lower than available experimental data: Na₂Cl, 3.7 eV (calcd^{5b}) vs 4.15 eV (exptl^{4b}); Li₃O, 3.4 eV (calcd^{5b}) vs 4.45 eV (exptl^{4a}); Na₃O, 3.5 eV (calcd^{5b}) vs 3.98 eV (exptl^{4c}); Li₃S, 3.2 eV (calcd^{5b}) vs 6.65 eV (exptl⁶). Large discrepancies are found with Li₃O and Li₃S. We have now refined the calculations of the IPs of several superalkali species at high ab initio levels using equilibrium geometries both for neutral and for cation forms. We have computed the dissociation energies and the vibrational frequencies of these species, as well.

Computational Methods

The geometries of LiF, Li_2F^+ , Li_2F , NaCl, Na_2Cl^+ , Na_2Cl , Li_2O , Li_3O^+ , Li_3O , Li_2S , Li_3S^+ , Li_3S , Na_2O , Na_3O^+ , Na_3O , Li_3N , Li_4N^+ , Li_4N , Li_3P , Li_4P^+ , and Li_4P were optimized employing analytical gradients⁷ with a polarized split-valence basis set augmented with diffuse functions

- (6) Wu, C. H.; Kudo, H. Private communications.
- (7) Schlegel, H. B. J. Comput. Chem. 1982, 3, 214.

Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. Gas-Phase Ion and Neutral Thermochemistry. J. Phys. Chem. Ref. Data, Supp. 1 1988, 17.
 (a) Hart, A.; Goodfried, P. L. J. Chem. Phys. 1975, 62, 1306. (b) Wu,

^{(5) (}a) Schleyer, P. v. R.; Würthwein, E.-U.; Pople, J. A. J. Am. Chem. Soc. 1982, 104, 5839. (b) Gutsev, G. L.; Boldyrev, A. I. Chem. Phys. Lett. 1982, 92, 262. (c) Schleyer, P. v. R. In New Horizons of Quantum Chemistry; Lowdin, P.-O., Pullman, B., Eds.; Reidel: Dordrecht, The Netherlands, 1983; pp 95-105. (d) Schleyer, P. v. R.; Würthwein, E.-U.; Kaufmann, E.; Clark, T. J. Am. Chem. Soc. 1983, 105, 5930. (e) Schleyer, P. v. R.; Tidor, B.; Jemmis, E. D.; Chandrasekhar, J.; Würthwein, E.-U.; Kos, A. J.; Luke, B. T.; Pople, J. A. J. Am. Chem. Soc. 1983, 105, 484. (f) Gutsev, G. L.; Boldyrev, A. I. Adv. Chem. Soc. 1983, 51, 169. (g) Klimenko, N. M.; Musaev, D. G.; Gorbik, A. A.; Zyubin, A. S.; Charkin, O. P.; Würthwein, E.-U.; Schleyer, P. v. R. Koord. Khim. 1986, 12, 601. (h) Pewerstorf, W.; Bonacic-Koutecky, V.; Koutecky, J. J. Chem. Phys. 1988, 89, 5794. (i) Fantucci, P.; Bonacic-Koutecky, V.; Pewestorf, W.; Klimenko, N. M.; Charkin, O. P. Zh. Strukt. Khim. 1988, 29, N3, 12. (k) Klimenko, N. M.; Mcbel, A. M.; Charkin, O. P. Zh. Strukt. Khim. 1988, 29, N3, 22. (l) Würthwein, E.-U.; Sen, K. D.; Pople, J. A.; Schleyer, P. v. S. Inorg. Chem. 1983, 22, 496. (m) Würthwein, E.-U.; Schleyer, P. v. R.; Pople, J. A. Schleyer, P. v. R.; Koord. 6973.

LizF C2v

Na2Cl Czv

LI

. 91 s

(LI

Na

Na

2 3.784A

> SLis' Dan

> > Na

Nas O* Dah

Na

NasO Dan

Na

NazO Deh

NLis Dan

PLis Csv

PLi4 C2↓

е 2.2 4.479/ 3.715A -2.5 1532 NLi4 Ta NLi4º Ta PLis Ta

Figure 1. Geometries of superalkali compounds with bond lengths (Å), natural charges (e), and overlap weighted NAO bond orders.^{33,34}

Figure 2. Highest occupied molecular orbitals (HOMOs) of superalkali compounds.

(HF/6-31+G*)8-10 and at correlated (MP2-FULL/6-31+G*) levels (UHF and UMP2-FULL for open shell systems). Parts a-e of Figure 1 display the geometries. Fundamental frequencies, normal coordinates, and zero point energies (ZPE) were calculated by using standard FG matrix methods.¹⁰ The MP2-FULL/6-31+G* equilibrium geometries were used to evaluate electron correlation corrections in the frozen-core approximation both by Moller-Plesset perturbation theory to full fourth order¹¹ and by the (U)QCISD(T)¹² method using the 6-311+G* and the 6-311+G(2df) basis sets. The UHF wave functions for open shell systems were projected to pure spectroscopic states (PUHF, PMP2, PMP3, and PMP4).¹³ Analytical frequencies at MP2-FULL/6-31+G* for closed shell systems were carried out with the CADPAC program,¹⁴ while GAUSSIAN 90 (CONVEX version)¹⁵ was used for the other calculations. The total energies at different correlated levels are presented in Table I. Dissociation energies and ionization potentials are given in Tables II and III, respectively. The first harmonic frequencies are summarized in Table IV.

Results and Discussion

Li₂F⁺, Li₂F, Na₂Cl⁺, and Na₂Cl. Experimental geometries and frequencies of Li₂F⁺ and Na₂Cl⁺ are not known, but the

- Hariharan, P. C.; Pople, J. A. *Theor. Chim. Acta* 1973, 28, 213. (a) Clark, T.; Chandrasekhar, J.; Spitznagel, G.-W.; Schleyer, P. v. R. (9) J. Comput. Chem. 1983, 4, 294. (b) Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265.
 (10) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio
- Molecular Orbital Theory; Wiley: New York, 1986. Raghavachari, K.; Pople, J. A. Int. J. Quant. Chem. 1978, 12, 91
- (12) Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem. Phys. 1987, 87, 5968
- (13) Schlegel, H. B. J. Chem. Phys. 1986, 84, 4530.
- (14) CADPAC. Amos, R.D.; Rice, J.E. CADPAC: The Cambridge Analytic
- (14) CADIARC: Allocation, P. 1997, C. Cambridge, 1987.
 (15) GAUSSIAN 90 (convex version). Frisch, M. J.; Head-Gordon, M.; Trucks, G. W.; Foresman, I. B.; Schlegel, H. B.; Raghavachari, K.; Robb, M. A.; Binkley, I. S.; Gonzales, C.; DeFrees, D. I.; Fox, D. I.; Whiteside, R. A.; Seeger, R.; Melius, C. F.; Baker, I.; Martin, R.; Kahn, L. R.; Stewart, I. I. P.; Fluder, E. M.; Topiol, S.; Pople, J. A. Gaussian Inc., Pittsburgh, PA, 1990.

experimental heat of formation of Na₂Cl⁺ and its dissociation energy into NaCl + Na⁺ ($D_0 = 41.3 \text{ kcal/mol}$) are available.¹⁶ According to published ab initio data (only at the HF level) the Li_2F^+ cation is linear ($D_{\infty h}$ symmetry), L^+ -Hal⁻- L^+ , with $R_e^ (Li-F) = 1.68 Å^{5c}$,¹⁷ (longer than in LiF, $R_e(Li-F) = 1.563 864$ Å¹⁸). We optimized Li_2F^+ and Na_2Cl^+ at the correlated MP2- $(FULL)/6-31+G^*$ level. Both species are linear (no imaginary frequencies) with bond lengths 1.671 Å for Li₂F⁺ and 2.481 Å for Na₂Cl⁺ (see Figure 1a). At our highest level (QCISD(T)/ 6-311+G(2df)//MP2(FULL)/6-31+G*+ZPE) the dissociation energies, $Li_2F^+ \rightarrow LiF + Li^+$ and $Na_2Cl^+ \rightarrow NaCl + Na^+$, are 67.9 and 48.0 kcal/mol, respectively.

The extra electrons in the neutral linear species Li₂F and Na₂-Cl ($D_{\infty h}$ symmetry) occupy 2σ -MOs (see Figure 2). Although those MOs are antibonding with respect to the central atomligand interaction, their energy should be lower than the 2s(3s)-AO energy of the isolated Li (Na) atom.^{5b} The earlier DVM- X_{α} calculations for linear Li2F and Na2Cl (at cation geometry) agree with this qualitative picture:^{5b} the IPs of Li_2F and $Na_2Cl(3.7 eV)$ are lower than the IPs of Li $(5.39 \text{ eV})^1$ and of Na $(5.14 \text{ eV}).^{37}$ However, the neutral compounds Li₂F and Na₂Cl are not stable toward angular deformation, because the 2σ -MOs in these species are ligand-ligand bonding. Accordingly, these neutral species deform to give shorter L.L distances and better ligand AO overlap. The previous Hartree-Fock calculations of Na₂Cl led to a C_{2v} equilibrium geometry with a Na-Cl-Na bond angle of 78.9°, a Na-Cl bond length of 2.566 Å, and a Na-Na distance of 3.261 Å.¹⁹ A corresponding C_{2v} structure with a linearization barrier of only 2.6 kcal/mol had been found for Li_2F (R(F-Li) = 1.617 Å, \angle Li-F-Li = 117.9°).^{5c} The resulting geometric and electronic structure is well described as Na2++Cl- 19,20-and the same is true for Li2^{•+}F⁻. The experimental dissociation energy of Na₂Cl \rightarrow NaCl + Na was estimated to be 18.0 kcal/mol²¹ and a IP of 4.15 ± 0.2 eV was found.^{4b}

Optimization of both Li₂F and Na₂Cl at UMP2-FULL/6-31+G* led to angular C_{2v} structures (²A₁ state) with R(Li-F)= 1.676 Å, R(Lim-Li) = 2.696 Å, and $\angle \text{Li-F-Li}$ = 107.1° and R(Na-Cl) = 2.545 Å, R(Na-Na) = 3.263 Å, and <math>2Na-Cl-Na= 79.7°, respectively (Figure 1a). Both neutral species are minima (no imaginary frequencies). The calculated Li-Li and Na-Na distances are intermediate between bond lengths in neutral Li₂ (2.777 Å) and Na₂ (3.153 Å), on the one hand, and the charged Li₂⁺⁺ (3.160 Å) and Na₂⁺⁺ (3.653 Å) radical cations (all geometries optimized at MP2-FULL/6-31+G*), on the other. The calculated dissociation energies of $Li_2F \rightarrow LiF + Li$ and $Na_2Cl \rightarrow$ NaCl + Na are 33.1 and 20.1 kcal/mol (QCISD(T)/6- $311+G^*+ZPE$)). The Na₂Cl value agrees with the experiment estimate (see Table II). The calculated adiabatic IPs of Li₂F (3.87 eV) and Na₂Cl (3.76 eV) are very close to the vertical electron affinities of corresponding cations calculated by the DV- X_{α} method (both 3.7 eV).^{5b} The experimental IP of Na₂Cl, 4.15 \pm 0.2 eV,^{4b} is somewhat higher.

Li₂O, Na₂O, and Li₂S. A linear Li-O-Li geometry was deduced from molecular beam experiments.²² The Li-O bond length of 1.60 ± 0.02 Å was obtained from gas-phase electron diffraction;²³ the vibrational frequencies, $\nu_2 = 112 \text{ cm}^{-1}$ and $\nu_3 = 945.6 \text{ cm}^{-1}$, were determined by IR spectroscopy in matrix isolation.²⁴ HF

- (16) Berkovitz, J.; Barson, C.; Goodman, G. J. Chem. Phys. 1980, 77, 631.
- Klimenko, N. M.; Zakzhevskii, V. G.; Charkin, O. P. Koord. Khim. (17)1982, *8*, 903.
- Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules; Van (18)Nostrand Reinhold: New York, 1979
- (19) Thompson, J. W.; Child, M. S. Chem. Phys. Lett. 1989, 157, 343.
- (20)
- Roach, A. C.; Child, M. S. Mol. Phys. 1968, 14, 1. Kappes, M.; Radi, P.; Schor, M.; Schumacher, E. Chem. Phys. Lett. 1985, 113, 243. (21)(22) Buchler, A.; Stauffer, J. L.; Klemperer, W. J. Chem. Phys. 1963, 39,
- 2299
- Tolmachev, S. M.; Zasorin, E. Z.; Rambidi, N. G. Zh. Strukt. Khim. (23)1969, 10, 541
- (24)(a) Seshadri, K. S.; White, D.; Mann, D. E. J. Chem. Phys. 1966, 45, 4697. (b) Spiker, R. C.; Andrews, L. J. Chem. Phys. 1973, 58, 702.

Table I. Correlated Total Energies (-au)

• • • • • • • • • • • • • • • • • • • •			PMP2(FC) ^c	PMP3(FC) ^c	PMP4(FC) ^c	QCISD	QCISD(T) ^c	QCISD(T) ^c +ZPE ^d
			6-31+G*,	6-31+G*,	6-31+G*,	6-31+G*,	6-31+G*,	6-31+G*,
species	6-31+G*	ZPE ^b	$6-311+G^{+}$, 6-311+G(2df)	$6-311+G^{+}$, 6-311+G(2df)	6-311+G*,	6-311+G*,	6-311+G*, 6-311+G(2df)	6-311+G*, 6-311+G(2df)
	7 225 00		7 225 546	0 511 (0(201)	<u> </u>			
LI [*] (3)	1.233 99		7.235 84 ^e					
			7.235 84*					
Li (2S)	7.432 11		7.431 56					
			7.432 03					
Na ⁺ (¹ S)	161.660 87		161.659 29e					
			161.664 29°					
N_{2} (2S)	161 843 74		161.664 29° 161.841 44°					
144 (0)	101.040 /4		161.845 98					
			161.845 98°					
$\operatorname{Li}_2(D_{\infty h}, {}^{\scriptscriptstyle 1}\Sigma_{\mathbf{g}}^{\scriptscriptstyle +})$	14.887 48 (0)	0.5	14.885 97	14.892 13	14.894 81	14.897 01	14.897 01	14.896 26
			14.891 08	14.896 64	14.899 24	14.901 59	14.901 59	14.900 84
Na ₂ $(D_{\infty h}, {}^{1}\Sigma_{g}^{+})$	323.704 27 (0)	0.2	323.698 67	323.703 68	323.705 78	323.707 37	323.707 37	323.707 07
			323.707 98	323.712.91	323.715 06	323.716 67	323.716 67	323.716 37
LiF $(1\Sigma_{*}^{+})$	107.151.35 (0)	1.3	107.145 13	323.714 53 107.138 06	323.716 59	323.718 28	323.718.28	323.71798
2 (<u>Lg</u>)	10/1101 00 (0)		107.205 18	107.196 21	107.210 82	107.203 63	107.208 10	107.206 15
		• •	107.254 43	107.247 57	107.262 66	107.252 72	107.259 53	107.257 58
NaCl (L_g^{+})	621.551 59 (0)	0.5	621.538 82 621.577 14	621.550 48	621.553 87	621.551 38	621.554 40	621.553 65
			621.632 57	621.649 87	621.656 43	621.648 62	621.656 52	621.655 77
$\operatorname{Li}_{2}F^{+}(D_{\infty h}, {}^{1}\Sigma_{g}^{+})$	114.498 43 (0)	2.5	114.487 85	114.483 16	114.493 32	114.488 92	114.491 07	114.487 32
			114.549 65	114.543 19	114.554 93	114.549 03	114.553 11	114.549 36
$Li_2 \mathbf{F} (C_{2m} {}^2\mathbf{A}_1)$	114.638 55 (0)	2.3	114.598 47	114.593 97	114.606 55	114.597 84	114.604 32	114.600 57
	11 11000 00 (0)	2.0	114.691 04	114.684 41	114.697 44	114.691 01	114.695 73	114.692 28
			114.740 78	114.736 16	114.749 92	114.740 66	114.747 81	114.744 36
$Na_2Cl^+(D_{mh}, {}^1\Sigma_g^+)$	783.291 34 (0)	1.0	783.274 76	783.286 80	783.289 77	783.287 37	783.290 19	783.288 69
			783.372 55	783.390 25	783.396 64	783.388 88	783.396 73	783.395 23
$Na_2Cl(C_{2v}, {}^2A_1)$	783.427 94 (0)	0.9	783.411 72	783.423 95	783.427 53	783.424 85	783.428 30	783.426 95
			783.454 14	783.465 90	783.469 91	783.466 85	783.470 63	783.469 28
$Li_2O(D_{mh}, {}^1\Sigma_{a}^+)$	90.021 94 (2)	2.6	90.008 24	89.991 24	90.016 63	90.004 33	90.009 11	90.005 22
			90.048 49	90.028 54		90.042 75	90.050 64	90.046 75
	00.001.07 (0)		90.094 37	90.076 13	90.105 95	90.086 33	90.097 61	90.093 72
$L_{12}O(C_{2v}, {}^{1}A_{1})$	90.021 96 (0)	2.7	90.008 17	89.991 14 90 028 41	90.016 64	90.004 29	90.009.07	90.005 03
			90.094 24	90.075 96	90.105 88	90.086 20	90.097 50	90.093 46
$Li_3O^+(D_{3h}, {}^1A_1')$	97.401 67 (0)	4.7	97.382 08	97.371 49	97.389 38	97.380 55	97.385 19	97.377 70
			97.423 80	97.410 28 97.456 18	97.432 20	97.420 34	97.427 72	97.420 23
$Li_{3}O(D_{3k}, {}^{2}A_{1}')$	97.529 62 (0)	4.2	97.509 50	97.498 45	97.519 74	97.509 53	97.515 82	97.509 53
			97.551 11	97.537 30	97.562 42	97.549 22	97.558 42	97.551 73
$I: O^{2+}(T, 1A)$	104 590 90 (0)	٤ ٥	97.595 76	97.583 62	104 670 21	97.592.04	97.604 18	97.597 89
$L_{14}O^{-1}(I_d, A_1)$	104.389 80 (0)	5.0	104.607 07	104.596 54	104.615 87	104.605 20	104.612.33	104.560 50
_			f					1011000 01
Na ₂ O $(D_{\infty h}, {}^{1}\Sigma_{g}^{+})$	398.759 53 (0)	1.5	398.746 78	398.715 19	398.765 98	398.745 77	398.739 62	398.737 23
			398.836 32	398.734 83	398.810.50	398.785 59	398.787 23	398./84 84 398 833 33
$Na_{3}O^{+}(D_{3h}, {}^{1}A_{1}')$	560.544 27 (0)	2.6	560.523 71	560.504 13	560.533 96	560.519 36	560.524 25	560.520 11
			560.572 45	560.549 89	560.584 09	560.566 20	560.574 25	560.570 36
Na $O(D_{11}, {}^2A_{1})$	560 662 43 (0)	25	560 643 20	560.597.69	560.631.11	560.609 52	560.620.89	560.617 00 560.642 81
	500.002 45 (0)	2.0	560.691 57	560.665 60	560.708 87	560.686 72	560.696 80	560.692 82
			560.736 59	560.712 46	560.754 51	560.728 87	560.742 80 ^g	560.739 05#
$Li_2S(C_{2v}, {}^{i}A_1)$	412.639 23 (0)	1.9	412.625 17	412.636 32	412.643 11	412.634.08	412.643 96	412.640 93
			412.710 48	412.726 04	412.735 67	412.724 42	412.735 51	412.732.48
$Li_2S(D_{mh}, {}^1\Sigma_8^+)$	412.638 56 (0)	2.2	412.623 36	412.634 82	412.640 88	412.636 37	412.641 70	412.638 19
			412.660 76	412.671 83	412.678 80	412.673 33	412.679 50	412.675 99
$Li_3S^+(D_{3h}, {}^1A_1')$	419.994 84 (0)	1.8	419.979 05	419.991 26	419.996 29	419.991 83	419.996 87	419.994.00
	- (-)		420.018 45	420.030 45	420.036 29	420.030 92	420.036 78	420.033 91
$\operatorname{Liss}(C, 2A)$	420 125 25 (0)	20	420.064 45	420.081 22	420.089 59	420.079 31	420.089 50	420.086 90
LI30 (U30, -A1)	-20.125 55 (0)	2.0	420.149 21	420.161 37	420.169 38	420.162 90	420.170 94	420.125 /1
			420.195 12	420.211 75	420.222 07			
Li ₃ S (C_{2v} , ² A ₁)	420.121 24 (1)	2.6	420.105 23	420.117 68	420.123 81	420.119 19	420.125 22	420.121 08
	10.330 37 (0)	7.4	77.006 49	76.978 36	77.025 76	76.999 33	77.012 30	77.005 29
			77.042 63	77.015 20		77.031 23	77.048 16	77.041 57

Table I. (Continued)

			PMP2(FC) ^c	PMP3(FC) ^c	PMP4(FC) ^c	QCISD	QCISD(T) ^c	$QCISD(T)^{c}+ZPE^{d}$
			6-31+G*,	6-31+G*,	6-31+G*,	6-31+G*,	6-31 +G* ,	6-31+G*,
	MP2 (FULL) ^a		6-311+G*.	6-311+G*.	6-311+G*.	6-311+G*,	6-311+G*,	6-311+G*,
species	6-31+G*	ZPE ^b	6-311+G(2df)	6-311+G(2df)	6-311+G(2df)	6-311+G(2df)	6-311+G(2df)	6-311+G(2df)
$Li_{3P}(C_{3p}, {}^{1}A_{1})$	363.250 64 (0)	3.0	363.233 44	363.243 88	363.256 03	363.246 26	363.256 90	363.252 12
5 (150) 17	• • •		363.267 49	363.277 69	363.290 60	363.279 47	363.291 11	363.286 33
			363.304 81	363.317 72	363.332 04	363.315 81	363.331 35	363.326 86
$Li_{3}P(D_{3h}, {}^{1}A_{1}')$	363.240 73 (1)	1.7						
$Li_{4}N^{+}(T_{4}, {}^{1}A_{1})$	84.384 24 (0)	6.2	363.259 76	363.270 46	363.281 18	363.271 40	363.281 61	363.278 90
			84.358 60	84.343 25	84.371 68	84.354 99	84.365 20	84.355 32
			84.388 42 f	84.371 52		84.383 32	84.395 64	84.385 76
$Li_4N(T_d, {}^2A_1)$	84.506 72 (0)	5.7 ^h	84.485 65	84.472 36	84.501 80	84.483 35	84.496 47	84.487 93
			84.515 33 f	84.500 61	84.532 80	84.511 64	84.526 91	84.518 37
$Li_4 P^+ (T_4, {}^1A_1)$	370.613 45 (0)	3.7	370.594 50	370.606 95	370.614 69	370.607 16	370.615 29	370.609 39
			370.631 77 f	370.644 20	370.652 74	370.644 04	370.653 15	370.647 25
$Li_{A}P(C_{2m}^{2}A_{1})$	370.736 71 (0)		370.716 84	370.728 58	370.739 61	370.729 60	370.741 26	
(-20,1)			370.753 16	370.764 70	370.776 63	370.765 33	370.778 04	

^a Number of imaginary frequencies in parentheses. ^b Zero point energy. ^c MP2(FULL)/6-31+G* geometry. ^d Scaled by 0.94.¹⁰ ^e Equivalent to HF values. ^f Exceeded our computational resources. ^g Estimated value. ^h MP2(FULL)/6-31G* geometry.

ab initio calculations with different basis sets also favored a linear $D_{\infty h}$ structure for Li₂O.^{5a,c,25} Very extensive HF calculations with large STO basis sets gave an equilibrium bond length of 1.595 Å, which coincides with the experimental value. Similarly, linear Li-S-Li structures were calculated at HF/6-31G* ^{25c,g,26} with a Li-S bond length of 2.12 Å. However, our MP2(FULL)/6-31+G* geometry optimizations for both Li₂O and Li₂S led to lower energy angular C_{2v} configurations (see Figure 1b) with equilibrium bond lengths and valence angles of 1.635 Å/169.4° for Li_2O and 2.116 Å/114.9° for Li_2S . The linearization barriers are very small in both cases, and Li₂O and Li₂S in their ground states are "quasilinear" with large deformation amplitudes. Moreover, geometry optimization of Li₂S even at HF/6-31+G* led to an angular structure. Li2O affords an additional example of a structure which changes preference from linear to bent when electron correlation corrections are included, e.g. at MP2(FULL) (see Table I). However, Na₂O is linear both at $HF/6-31+G^*$ and at MP2(FULL)/6-31+G* (the latter with Na-O = 2.029Å; see Figure 1b).

As Li_2O and Li_2S are isoelectronic with H_2O , they are expected to have nonlinear structures. As shown by the NLMO analysis,27 in the bent structures the lithium contributions to the hybrid overlap in the natural localized MOs prevail over the Coulomb repulsion of the positively charged Li atoms (which leads to a widening of the angle). This covalent contribution is manifest especially in SLi₂, but it is also significant enough in OLi₂ to influence the geometry.

The preference of linear or nonlinear structures of L_2O compounds (L = alkali metal atom) depends generally on the balance of covalent contributions to the L–O bond (which favors an angular structure) and of the repulsion between the positively charged ligands (which favors a linear structure). Correlation results in shifts of electron density in Li₂O and Li₂S from the doubly negatively charged central atom to the ligands. Since the bonds become more covalent, the structural preference of Li₂O changes to $C_{2\nu}$. With Na₂O, this correlation effect is not sufficient to overcome the repulsion between the Na⁺ cations.

Li₃O+, Li₃O, Li₃S+, Li₃S, Na₃O+, and Na₃O. The Li₃O+, Li₃S+, and Na₃O⁺ cations were studied at HF levels previously.^{5a,j,m} The

most stable D_{3h} configurations, with $R(\text{Li-O}) = 1.70 \text{ Å},^{5j} 1.67$ Å,^{5a} R(Li-S) = 2.23 Å,^{5j} and R(Na-O) = 2.02 Å,^{5m} as well as dissociation energies for $Li_3O^+ \rightarrow Li_2O + Li^+$ (86.6 kcal/mol) and $Li_3S^+ \rightarrow Li_2S + Li^+$ (72.6 kcal/mol) were deduced.^{5j} The adiabatic ionization potential, $Na_3O \rightarrow Na_3O^+$, was estimated to be 2.92 eV.5m

Geometry optimization at MP2(FULL)/ $6-31+G^*$ for Li₃O⁺, Li_3S^+ , and Na_3O^+ also led to planar D_{3h} structures (no imaginary frequencies). Our bond lengths and dissociation energies agree with the earlier HF data (see Figure 1c and Table IV) because the bonding is highly ionic and electron correlation is not important.

The extra electrons in the planar D_{3h} forms of the neutral molecules, Li₃O, Na₃O, and Li₃S, occupy valence 2a₁ MOs. These MOs are antibonding with respect to interactions between central atom and ligands but are ligand-ligand bonding (Figure 2).5c Therefore, the geometries of the neutral species and cations might differ-as in the M₂X cases-to take advantage of ligand-ligand bonding. However, MP2(FULL)/6-31+G* optimization still favored planar triangular D_{3h} geometries for Li₃O and Na₃O but gave a triangular pyramidal C_{3v} structure for Li₃S (see Figure 1c). The optimized M-L bond lengths are nearly the same in the neutral and in the corresponding cationic species: 1.682 Å (Li₃O) vs 1.696 Å (Li₃O⁺), 2.205 Å (Li₃S) vs 2.192 Å (Li₃S⁺), and 2.057 Å (Na₃O) vs 2.038 Å (Na₃O⁺) (all data at MP2(FULL)/ 6-31+G*). Li₃O and Na₃O as cationic and neutral molecules have the same geometries because the ligand-ligand distances 2.913 and 3.562 Å are close to the optimum values (see Li_2F and Na₂Cl, above). For Li₃S the Li…Li separation in the D_{3h} structure (3.797 Å) is too large. Therefore, pyramidization occurs; the Li…Li distance of 3.067 Å in the C_{3v} form of Li₃S is quite close to that in D_{3h} Li₃O.

Li₃N and Li₃P. There is no experimental information about the structures, stabilities, and vibrational frequencies of the Li₃N and Li₃P molecules. HF ab initio geometry optimizations are available for $Li_3N^{5c,j,l,28,29}$ and for $Li_3P.^{5j,26,30}$ Planar D_{3h} and pyramidal C_{3v} structures were found for Li₃N and Li₃P, respectively, with bond lengths of 1.735 Å for Li-N²⁸ and 4.186 Å for Li-P as well as a 110.7° bond angle for \angle Li-P-Li.³⁰ Our optimizations at the correlated MP2(FULL)/6-31+G* level also led to the same preferences, D_{3h} geometry for Li₃N and C_{3v} for Li₃P with R(Li-N) = 1.744 Å, R(Li-P) = 2.257 Å, and $\angle \text{Li-P}$

(30) Marynick, D. S. Chem. Phys. Lett. 1980, 75, 550.

^{(25) (}a) Grow, D. T.; Pitzer, R. M. J. Chem. Phys. 1977, 67, 4019. (b) Blickensderer, R. P.; Jordan, K. D. Chem. Phys. 1979, 41, 193. (c) Kao, blickensderer, K. F., Jordan, K. D. Chem. Phys. 1975, 41, 195. (c) Kado,
 J. Mol. Struct. 1979, 56, 147. (d) Marynick, D. S.; Dixon, D. A. J.
 Phys. Chem. 1983, 87, 3430. (e) Curtiss, L. A.; Blauder, M. J.
 Electrochem. Soc. 1984, 131, 2271. (f) Siddarth, P.; Gopinathan, M.
 S. J. Am. Chem. Soc. 1988, 110, 96. (g) Mebel, A. M.; Klimenko, N.
 M.; Charkin, O. P. Zh. Strukt. Khim. 1988, 29, 357.
 Marsden, C. J. J. Chem. Soc., Chem. Commun. 1989, 89, 1356.
 Reed, A. E.; Weinhold, F. J. Chem. Phys. 1985, 83, 1736.

Würthwein, E.-U.; Sen, K. D.; Pople, J. A.; Schleyer, P. v. R. Inorg. (28)Chem. 1983, 22, 496.

Armstrong, D. R.; Perkins, P. G.; Walker, G. T. Theochem. 1985, 23, (29)

Table II. Correlated Reaction Energies (kcal/mol) at MP2(FULL)/6-31+G* Geometries

	MP2-FU	MP2(FC) 6-31+G*, 6-311+G*,	MP3(FC) 6-31+G*, 6-311+G*,	MP4(FC) 6-31+G*, 6-311+G*,	QCISD(T) 6-31+G*, 6-311+G*,	QCISD(T)+ZPE ^a 6-31+G*, 6-311+G*,	
reacn	6-31+G*	6-311+G(2df)	6-311+G(2df)	6-311+G(2df)	6-311+G(2df)	6-311+G(2df)	exptl
1. Li ₂ → 2Li	14.6	14.3	18.2	19.9	21.3	20.8	22.7 ^{2j}
		15.7	19.5	21.2	22.6	22.1	23.7 ³⁸
		17.0	20.4	22.1	23.5	23.1	25.5 ± 1.5 ^{2b}
2. $Na_2 \rightarrow 2Na$	10.5	9.9	13.1	14.4	15.4	15.2	16.9 ³⁹
		10.1	13.1	14.5	15.5	15.3	17.038
		11.4	14.2	15.5	16.5	16.3	
3. $Li_2F^+ \rightarrow LiF + Li^+$	69.7	67.3	68.8	67.0	67.7	66.6	
		68.2	69.7	67.9	68.5	67.4	
		67.9	69.4	68.4	68.4	67.2	
4. $Li_2F \rightarrow LiF + Li$	34.6	32.9	34.3	33.2	34.0	33.1	
		33.8	35.2	34.3	34.9	33.9	
		34.1	35.5	34.7	35.3	34.4	
5. $Na_2Cl^+ \rightarrow NaCl + Na^+$	49.5	48.1	48.3	48.1	48.0	47.5	41.316
		48.0	48.2	48.0	47.9	47.4	36.7 ⁴⁶
		47.5	47.7	47.6	47.6	47.2	
6. $Na_2Cl \rightarrow NaCl + Na$	20.5	19.7	20.1	20.2	20.4	20.0	14.346
		19.5	19.8	19.9	20.1	19.7	18.0 ²¹
		19.4	19.7		20.1	19.7	
7. $Li_3O^+ \rightarrow Li_2O + Li^+$	90.2	86.8	90.8	86.1	88.2	86.2	
		87.6	91.6	86.7	88.7	86.7	
		86.5	90.6	85.7	87.8	85.8	
8. $Li_4O^{2+} \rightarrow Li_3O^+ + Li^+$	-30.0	-32.7	-31.3	-33.0	-32.3	-33.1	
		-33.0	-31.1	-32.7	-32.1	-32.9	
9. $Li_3O \rightarrow Li_2O + Li$	47.4	43.7	47.5	44.9	47.1		$50.7 \pm 10.0^{4a,40}$
		44.3	48.2	45.3	47.6	46.1	
		43.6	47.5	44.5	46.8	45.6	
$10. Na_3O^+ \rightarrow Na_2O + Na^+$	77.7	73.8	80.1	78.2	78.6	77.5	
		74.3	82.0	68.6	77.0	76.1	
11. $Na_3O \rightarrow Na_2O + Na$	37.1	34.5	39.9	32.4	41.2	40.2	
		35.1	40.6	32.9	39.9	38.9	
		34.1	39.6	32.3			
12. $L_{14}N^{+} \rightarrow L_{13}N^{+} + L_{1}^{+}$	95.3	91.0	98.2	87.8	92.0	90.2	
	40.1	91.7	98.7		92.6	90.8	
13. $L_{14}N \rightarrow L_{13}N + L_1$	49.1	48.4	56.8		51.4	50.4	
		48.2	56.6	47.1	51.8	50.9	
$14. L_{13}S^{+} \rightarrow L_{12}S^{+} L_{1}^{+}$	75.0	74.3	74.9	73.8	73.6	73.7	
		74.7	75.4	74.3	74.2	74.3	
	22.0	/4.1	/4.9	/4.1	/4.1	74.3	10 1 1 10 06
15. $L_{13}S \rightarrow L_{12}S + L_1$	33.9	32.7	33.5	33.8	34.3	33.4	$45.4 \pm 10.3^{\circ}$
		33.6	34.5	34.7	35.2	34.3	
	70 (33.1	33.1	34.2	54.7	33.9	
$10. L_{14}P^{+} \rightarrow L_{13}P + L_{1}^{+}$	/9.6	/8.8	80.0	77.3	77.1	76.4	
	22.0	80.6	82.0	/9.2	/9.2	78.5	
$1/. L1_4P \rightarrow L1_3P + L1$	53.9	32.0	55.4	52.7	55.1		44.5 ≡ 5 .7 ⁴¹
		34.0	54.8	53.9	34.4		

^a Scaled by 0.94.10

 $P-Li = 94.9^{\circ}$ (Figure 1d). Our inversion barrier for Li₃P, 4.7 kcal/mol at QCISD(T)/6-311+G⁺ + ZPE//MP2(FULL)/6-31+G⁺, is somewhat larger than the 2.2 kcal/mol CISD value.³⁰ Calculated frequencies (Table III) may help to identify these molecules in the gas phase or in matrix isolation.

Li₄N⁺, Li₄N, Li₄P⁺, and Li₄P. The Li₄P⁺ cation was detected in mass spectrometric experiments,⁴ⁱ but experimental structures for Li₄N⁺ and Li₄P⁺ do not exist. Ab initio calculations assumed tetrahedral structures; equilibrium bond lengths were calculated at HF/3-21G (Li–N = 1.80 Å)^{5c} and at HF/3-21G^{*} (Li–N = 1.83 Å, Li–P = 2.32 Å).^{5j} The calculated dissociation energies of Li₄N⁺ \rightarrow Li₃N + Li⁺ and Li₄P⁺ \rightarrow Li₃P + Li⁺ were 89.8 and 84.3 kcal/mol at MP3/DZP.^{5k} We optimized the geometries of both cations at MP2(FULL)/6-31+G^{*} in T_d symmetry and found them to be the global minima (no imaginary frequencies; see Table III). Our bond lengths 1.790 Å (Li₄N⁺) and 2.275 Å (Li₄P⁺) differ little from the previous ab initio data.^{5c,j} The same is true for our calculated dissociation energies of 90.8 kcal/mol for Li₄N⁺ and 78.5 kcal/mol for Li₄P⁺ (QCISD(T)/6-311+G^{*}+ZPE).

For the neutral Li₄P molecule the heat of formation and a dissociation energy into Li₃P + Li (44.5 kcal/mol) have been measured by high-temperature thermochemistry.⁴ⁱ Ab initio data are available for Li₄N^{5c} but not for Li₄P. The valence electronic

configuration of both Li_4N^+ and Li_4P^+ is $(1a_1)^2(1t_2)^6(2a_1)^0$; therefore, the extra electron of the neutral Li₄N and Li₄P species should occupy the $2a_1$ MO in T_d symmetry. This MO is antibonding with respect to central atom-ligand interactions but ligand-ligand bonding (see Figure 2c). According to our MP2-(FULL)/6-31+G* calculations, Li₄N favors tetrahedral symmetry with Li-N = 1.778 Å (Figure 1e). As in Li_3O and Na_3O , the neutral Li₄N and charged Li₄N⁺ species prefer structures with the same symmetry because in neutral Li₄N the Li...Li distances (2.903 Å) are nearly optimum. Indeed, the bonding Li…Li interactions result in Li…Li distances even shorter in Li₄N than in Li₄N⁺. However, the C_{2v} structure of Li₄P (see Figure 1e) differs from the T_d geometry favored by the corresponding Li_4P^+ cation. The explanation of the instability of the T_d structure for Li_4P is the same as discussed above for Li_3S . The Li.Lidistances (3.669 Å) in T_d Li₄P are too large to permit optimum overlap between the Li AOs; therefore Li₄P distorts to $C_{2\nu}$ symmetry. While one edge of the tetrahedron increases to 4.500 Å, the other Li…Li distances decrease to 3.338 Å (see Figure 1e). The last separation is closer to the Li…Li distance in Li₃O, Li₃S (C_{3v}) , and Li₄N.

The same kind of distortion has been noted before in Li_4F .^{5c} The closed shell system Li_4Si and Li_4S favor similar structures as well. The $C_{2\nu}$ geometry of Li_4Si is 6.6 kcal/mol lower in energy

Table III. Adiabatic Ionization Potentials (eV) at MP2(FULL)/6-31+G* Geometries

reacn	MP2-FU 6-31+G*	MP2(FC) 6-31+G*, 6-311+G*, 6-311+G(2df)	MP3(FC) 6-31+G*, 6-311+G*, 6-311+G(2df)	MP4(FC) 6-31+G*, 6-311+G*, 6-311+G(2df)	QCISD(T) 6-31+G*, 6-311+G*, 6-311+G(2df)	QCISD(T)+ZPE ^a	exptl
1. Li \rightarrow Li ⁺	5.34	5.33	5.33	5.33	5.33		5.39 ¹
		5.34	5.34	5.34	5.34		
		5.34	5.34	5.34	5.34		
2. Na → Na+	4.98	4.96	4.96	4.96	4.96		5.14 ³⁷
		4.94	4.94	4.94	4.94		
		4.94	4.94	4.94	4.94		
3. $Li_2F \rightarrow Li_2F^+$	3.81	3.84	3.84	3.87	3.87	3.88	
		3.85	3.84	3.88	3.88	3.89	
		3.87	3.87	3.90	3.90	3.91	
4. $Na_2Cl \rightarrow Na_2Cl^+$	3.72	3.73	3.73	3.75	3.76	3.76	4.15 ± 0.2^{4b}
		3.71	3.71	3.73	3.74	3.74	
		3.73	3.73		3.75	3.75	
5. Li₃O → Li₃O+	3.48	3.47	3.45	3.55			4.5 ♠ 0.2 ⁴ ª
		3.46	3.46	3.54	3.56	3.58	
		3.48	3.47	3.55	3.56	3.59	
6. Na₃O → Na₃O ⁺	3.22	3.25	3.16	3.40	3.33	3.34	3.90 ± 0.1^{2e}
		3.24	3.15	3.40	3.33	3.33	
		3.22	3.12	3.36			
7. Li ₄ N → Li ₄ N ⁺	3.33	3.49	3.54		3.57	3.61	
		3.45	3.51		3.56	3.61	
8. Li₃S → Li₃S+	3.55	3.53	3.54	3.60	3.63	3.58	6.6 ± 0.2 ⁶
		3.56	3.56	3.62	3.65	3.61	
		3.56	3.55	3.61	3.63	3.58	
9. Li₄P → Li₄P+	3.35	3.27	3.31	3.40	3.43		
		3.30	3.28	3.37	3.40		

^a Scaled by 0.94.¹⁰

than the T_d form (MP2/6-31G*//3-21G(*)).³¹ A similar minimum exists for Li₄S, although this is not the global minimum $(E_{\rm rel} = 8.26 \text{ kcal/mol at HF}/6-31G^*).^{32}$

The optimum ligand-ligand distances, ca. 2.9 Å for Li-Li and ca. 3.3 Å for Na. Na, may be useful to help interpret possible distortions of the neutral ML_{k+1} species with other central atoms from the structures of the corresponding ML_{k+1} + cations. These optimum ligand-ligand distances may also help to explain structural distortions from these expected in molecules where bonding ligand-ligand interactions are important. For example, the Li₄O molecule is tetrahedral (with a Li.-Li distance of 2.815 Å at $HF/6-31G^*$), but the isoelectronic Li_4S molecule prefers C_{3v} symmetry (S atom coordinated to a Li₄ tetrahedron³²). The ligand-ligand distances (3.634 Å) are too large in the T_d Li₄S structure.

Low experimental IPs for the other superalkali systems, for $KH_2O(3.92 \pm 0.04 \text{ eV}), KNH_3(3.87 \pm 0.04 \text{ eV}), K_2NH_2(3.94 \text{ eV})$ \pm 0.08 eV), and K₂OH (3.55 \pm 0.08 eV),^{4e} are comparable to the IPs of the superalkalis studied here.

Bonding in Superalkalis. The stability of the cations $(Li_2F^+,$ Na_2Cl^+ , Li_3O^+ , Li_3S^+ , Na_3O^+ , Li_4N^+ , and Li_4P^+) is due to the electrostatic attraction of the Li⁺ or Na⁺ cations to the negative charged central atom (natural population and natural bond orbital analyses^{33,34} are given in Figure 1a-e). The L-M bonds in all these cations are essentially fully ionic. On the basis of electrostatic repulsion of the cations' linear Li₂F⁺ and Na₂Cl⁺ $D_{\infty h}$ structures, planar triangular D_{3h} structures for Li₃O⁺, Li₃S⁺ and Na₃O⁺ and tetrahedral T_d structures for Li₄N⁺ and Li₄P⁺ can be expected.

According to classical theories of valence, the neutral superalkali species ML_{k+1} should not be stable, because the maximum "combining capacity" is one for F and Cl, two for O and S, and three for N and P; the central atom would have to "accept" more electrons and thus violate the octet rule. However, the bonding in neutral ML_{k+1} species is significantly different from such classical models: while the central atoms possess nearly maximum anionic charges (F-, Cl-, O²⁻, S²⁻, N³⁻, and P³⁻), the lithium and sodium charges are less than the unit values (e.g. as found in ML_{k+1}^{+} cations). The stability of neutral superalkali species is due both to the attractive electrostatic interactions between ligands and the central atom and in all superalkali ML_{k+1} molecules to the covalent interactions between ligands.

The HOMOs all have the same character, antibonding with respect to central atom-ligand interactions but ligand-ligand bonding (see Figure 2). The HOMOs are mainly comprised of the ligand AOs. The NH_4 molecule is also stable (see ref 35 and references there), but the nature of the bonding differs fundamentally from that in Li_4N . The HOMO of NH_4 is a Rydberg nitrogen AO (essentially no contributions from the hydrogen AO). The corresponding antibonding MO in NH₄ is higher than the Li₄N HOMO. This change in the bonding character is due to the Li-Li interactions (the valence orbitals of alkali metals are more diffuse than the 1s AOs of hydrogen). Therefore, the antibonding MOs of the hyperlithiated compounds are lower in energy than the Rydberg AOs of the central atoms.

Speculations on Experimental Realization. While nearly all the permetalated cationic species we have discussed have been detected experimentally in the gas phase^{4d,i,6,16} and the Li₂F⁺ cation was found in molten [(K,Na),Li][F,NO₃] salt systems with a total concentration relationship $C_{\rm Li} > C_{\rm F}$,³⁶ no solid salts containing superalkali cations have been recognized. We suggest that molecules like $Li_3O^+Cl^-$, $Li_4N^+Br^-$, etc. may be prepared in matrix isolation by condensing gas-phase mixtures of Li₂O and LiCl, Li₃N and LiBr, etc. Solid-state substances with superalkali cations might be prepared by melting Li₂O and LiBF₄, or similar pairs of salts, in 1:1 stoichiometric proportions. As mentioned above, the Li_2F^+ cation was detected in a molten mixture of salts. The calculated frequencies and IR intensities of superalkali cations (Table III) may help to identify these molecules e.g. in matrixes.

Moreover, multicharged cations like Li₄O²⁺, ^{5a,c,37} Li₆P²⁺, etc. may also be stable in the crystal fields of the solid state. Although

(37) Jug, K. J. Comput. Chem. 1984, 5, 555.

⁽³¹⁾ (a) Schleyer, P. v. R.; Reed, A. E. J. Am. Chem. Soc. 1988, 110, 4453. (b) Reed, A. E.; Schleyer, P. v. R.; Janoschek, R. J. Am. Chem. Soc. 1991, 113, 1885.

Rehm, E.; Schleyer, P. v. R. Unpublished results. (32)

 ⁽³³⁾ Reed, A. E.; Weinhold, F. *QCPE Bull.* 1985, 5, 141.
 (34) Reed, A. E.; Weinhold, F. *Chem. Rev.* 1988, 88, 899.

⁽³⁵⁾ (a) Williams, B. W.; Porter, R. F. J. Chem. Phys. 1982, 73, 5598. (b) Gellene, G. I.; Cleary, D. A.; Porter, R. F. J. Chem. Phys. 1983, 77, 287.

Bengtsson, L.; Holmberg, B.; Ulvenlund, S. Inorg. Chem. 1990, 29, (36) 3615

Ab Initio Study of Superalkalis

Table IV. Frequencies (cm⁻¹), Zero Point Energies (ZPE, in kcal/mol), and IR Intensities (in Parentheses, km/mol)

species, geometry	sym state	NIMAG⁴	freq	HF/6-31G*	MP2(FULL)/ 6-31+G*	species geometry	sym state	NIMAG ^a	freq	HF/6-31G*	MP2(FULL)/ 6-31+G*
Li₂O, <i>D</i> _≈ ,	¹ Σ ₈ +	0/1	$\nu_1 (\sigma_g) \\ \nu_2 (\sigma_u) \\ \nu_3 (\pi_u) \\ \mathbf{ZPE}^b$	858 (0.0) 1137 (454) 133 (237) 3 2	769 1027 46i 2.6	Li ₃ S, C ₂₀	² A ₁	1/-	ν_1 (a1) ν_2 (a ₁) ν_3 (a ₁) ν_4 (b ₁)	618 (240) 495 (16) 260 (23) 23 <i>i</i> (44)	
Li ₂ O, C _{2v}	¹ A ₁	0/0	$\nu_1 (a_1)$ $\nu_2 (a_1)$ $\nu_3 (b_2)$ 7DE	2.2	774 64 1027	LipC	14.	0/0	ν_{5} (b ₂) ν_{6} (b ₂) ZPE ^b	426 (16) 67 (32) 2.7	502 (1 2)
Li₃O ⁺ , <i>D</i> ₃k	¹ A 1′	0/0	$ \frac{\nu_1 (a_1')}{\nu_2 (a_2'')} \\ \frac{\nu_3 (c')}{\nu_4 (c')} $	727 272 874 291	685 (0.0) 285 (288) 843 (286) 305 (75)	Li3r, C30	-74	0/0	$ \nu_1 (a_1) \\ \nu_2 (a_1) \\ \nu_3 (e) \\ \nu_4 (c) \\ ZPE^b $		172 (46) 532 (64) 169 (5.2) 3.0
Li ₃ O, <i>D</i> _{3k}	² A ₁ ′	0/0	ZPE^{o} $\nu_{1} (a_{1}')$ $\nu_{2} (a_{2}'')$ $\nu_{3} (e')$ $\nu_{4} (e')$ ZDE^{b}	4.8	4.7 699 (0.0) 148 (0.0) 859 (181) 188 (592) 4.2	Li_3P, D_{3h}	¹ A ₁	1/3		457 (0.0)	500 80 <i>i</i> 362 357 <i>i</i> 1.7
Li₄O ²⁺ , <i>T</i> ₫	ⁱ A ₁	0/0	$ \begin{array}{l} $		4.2 557 266 627 365	Li,P+ D.,	14.	1/-	$ \nu_1 (a_1) $ $ \nu_2 (c) $ $ \nu_3 (t_2) $ $ \nu_4 (t_2) $ $ ZPE^b $ $ \nu_4 (a_1) $	437 (0.0) 133 (0.0) 510 (182) 129 (82) 3.8 472 (0.0)	141 (0.0) 517 (153) 106 (60) 3.5
Li ₃ N, <i>D</i> 3k	'Aı'	0/0	$ \begin{array}{c} \nu_1 (a_1') \\ \nu_2 (a_2'') \\ \nu_3 (e') \\ \nu_4 (e') \\ ZPE^b \end{array} $	707 (0.0) 144 (160) 915 (254) 236 (66) 4.5	641 202 852 257 4.4	L141 , D49	Αig	1/-	$\nu_1 (a_{1g})$ $\nu_2 (a_{2u})$ $\nu_3 (b_{1g})$ $\nu_4 (b_{2g})$ $\nu_5 (b_{2u})$ $\nu_6 (e_u)$	94 (164) 446 (0.0) 261 (0.0) 106i (0.0) 527 (312)	
Li4N+, <i>Ta</i>	¹ A1	0/0	$ \nu_1 (a_1) \\ \nu_2 (c) \\ \nu_3 (t_2) \\ \nu_4 (t_2) \\ ZPE^b $	643 (0.0) 237 (0.0) 776 (276) 312 (114) 6.3	606 (0.0) 264 (0.0) 760 (149) 303 (60) 6.2	Li4P, C30	2A ₁	0/-	$ \nu_4 (e_u) $ $ ZPE^b $ $ \nu_1 (a_1) $ $ \nu_2 (a_1) $ $ \nu_3 (a_1) $	189 (30) 574 (125) 470 (1.2) 168 (3.8)	
Li4N+, <i>D</i> 4h	¹ A 1	1/-	$ \nu_1 (a_{1g}) $ $ \nu_2 (a_{2u}) $ $ \nu_3 (b_{1g}) $ $ \nu_4 (b_{2g}) $ $ \nu_5 (b_{2u}) $	479 58 466 303 20/		Liz P Ta	² A ,	3/-	$ \nu_4 (e) $ $ \nu_5 (e) $ $ \nu_6 (e) $ $ ZPE^b $ $ \nu_1 (a_1) $	457 (0.9) 109 (243) 52 (43) 3.5 449 (0.0)	
Lian. Ta	² A ,	0/0	$\nu_{6} (e_{u})$ $\nu_{7} (e_{u})$ ZPE ^b $\nu_{1} (a_{1})$	648 280 4.0 573 (0.0)	710 (0.0)4	1.41 , 1 8		5/-	ν_{1} (c) ν_{2} (c) ν_{3} (t ₂) ν_{4} (t ₂) ZPE	54 (0.0) 484 (626) 103 <i>i</i> (391) 2 9	
Z		0,0	$ \nu_2 (c) \\ \nu_3 (t_2) \\ \nu_4 (t_2) \\ ZPE^b $	192 (0.0) 749 (1.0) 193 (194) 5.4	225 (0.0)¢ 788 (404)¢ 149 (1229)¢ 5.7¢	Li ₄ P, C _{2v} (I)	² A 1	0/0	$ \begin{array}{l} \nu_1 (a_1) \\ \nu_2 (a_1) \\ \nu_3 (a_1) \\ \nu_4 (a_1) \end{array} $	498 (11) 459 (12) 143 (17) 93 (12)	
Li4N, <i>D</i> 4h	² A _{1g}	1/-		530 (0.0) 227 (113) 493 (0.0) 275 (0.0) 169 <i>i</i> (0.0) 739 (2.9) 204 (1974)		Li ₄ P, C ₂₀ (II) ^d	² A1	0/-	$\nu_{5} (a_{2}) \\ \nu_{6} (b_{1}) \\ \nu_{7} (b_{2}) \\ \nu_{8} (b_{2}) \\ \nu_{9} (b_{2}) \\ ZPE^{b} \\ \nu_{1} (a_{1})$	142 (0.0) 510 (419) 120 (48) 527 (18) 150 (232) 3.8 524 (47)	
Li4N, C20	² A ₁	1/-	ZPE^{b} $\nu_{1} (a_{1})$ $\nu_{2} (a_{1})$ $\nu_{3} (a_{1})$ $\nu_{4} (a_{1})$ $\nu_{5} (b_{1})$ $\nu_{6} (b_{1})$ $\nu_{7} (b_{2})$ $\nu_{8} (b_{2})$	4.9 872 (750) 614 (22) 282 (127) 178 (13) 111 (48) 63 (61) 661 (76) 188 (7.4)					$v_2(a_1)$ $v_3(a_1)$ $v_4(a_1)$ $v_5(a_2)$ $v_6(b_1)$ $v_7(b_2)$ $v_8(b_2)$ $v_9(b_2)$ ZPE ^b	457 (13) 222 (0.1) 82 (67) 100 (0.0) 565 45 (8.6) 404 (29) 52 (31) 3.5	
Li ₂ S, C ₂₀	¹ A1	0/0	$ \nu_9 (b_2) $ $ ZPE^b $ $ \nu_1 (a_1) $ $ \nu_2 (a_1) $ $ \nu_3 (b_2) $	169 <i>i</i> (23) 4.2	583 128 637	Li4P, <i>D</i> 4h	² B _{2g}	1/-	$\nu_1 (a_{1g}) \\ \nu_2 (a_{2u}) \\ \nu_3 (b_{1g}) \\ \nu_4 (b_{2g}) \\ \nu_5 (b_{2u})$	478 (0.0) 34 <i>i</i> (54) 473 (0.0) 310 (0.0) 32 (0.0)	
Li2S, <i>D</i> ∞h	¹∑ ₈ +	2/0	ZPE ⁵ ν ₁ (σ _g) ν ₂ (σ _u) ν ₃ (π _u) ZPE ^b		588 658 127 2.1	N&2Cl ⁺ , D∞k	¹ Σ ₈ +	0/-	$ \nu_{6} (e_{u}) $ $ \nu_{7} (e_{u}) $ $ ZPE^{b} $ $ \nu_{1} (\sigma_{g}) $ $ \nu_{2} (\sigma_{u}) $	674 (7992) 300 (1254) 4.6 222 (0.0) 321 (109)	
Li3S ⁺ , <i>D</i> 3h	¹ A 1'	0/0	$v_1 (a_1')$ $v_2 (a_2'')$ $v_3 (e')$ $v_4 (e')$ 7DEb		482 102 547 140	Na3O+, D3h	¹ A 1	0/0	$ \nu_3 (\pi_u) $ $ ZPE^b $ $ \nu_1 (a_1') $ $ \nu_2 (a_2'') $ $ v_n (\pi') $	52 (71) 0.9	307 (0.0) 203 (151) 520 (132)
Li₃S, C₃₀	² A ₁	0/0	$\sum_{\nu_1} \sum_{\substack{\nu_2 \\ \nu_2 \\ \nu_3 \\ \nu_3 \\ \nu_4 \\ \nu_4 \\ \nu_5 \\ ZPE^b}$		546 (31) 144 (18) 507 (3.1) 119 (210) 2.8	Na3O, <i>D</i> 3#	² A1	0/0	$\nu_3 (c)$ $\nu_4 (e')$ ZPE^b $\nu_1 (a_1')$ $\nu_2 (a_2'')$ $\nu_3 (e)$ $\nu_4 (e)$ ZPE^b		147 (15) 2.6 316 (0.0) 138 (4.3) 524 (24) 109 (31) 2.5

^a Number of imaginary frequencies at HF/MP2. ^b Unscaled. ^c MP2(FULL)/6-31G^{*}. ^d This local minimum represents a variant of structure I (see Figure Ie), with a shortened $Li_{eq}Li_{eq}$ bond, an elongated PLi_{eq} bond, and a decreased $La_{ax}PLi_{ax}$ angle.

having metastable minima in isolation (see Table IV), these doubly charged species are thermodynamically unstable and are likely to split off Li⁺ (see Table II). The electrostatic repulsions between the ligands are high.

Conclusions

1. All the superalkalis we have investigated $(Li_2F, Na_2Cl, Li_3O, Li_3S, Na_3O, Li_4N, and Li_4P)$ are thermodynamically stable toward loss of an alkali metal atom. All possess very low IPs—lower than the IP of the Cs atom, the lowest IP among the alkali metals. The low first ionization potentials in the superalkali species are due to the antibonding character of central atom-ligand bonding and to the electrostatic stabilization of the corresponding cations.

(40) Kimura, H.; Asano, M.; Kubo, K. J. Nucl. Mater. 1980, 92, 221.

2. The structures of the superalkali species are determined mainly by the ligand-ligand bonding interactions in the HOMO of these species. The Li₃O, Na₃O, and Li₄N molecules possess the same high-symmetry geometries as the corresponding cations, Li₃O⁺, Na₃O⁺, and Li₄N⁺. In contrast, the neutral Li₂F, Na₂Cl, Li₃S, and Li₄P prefer lower symmetry than their cations. These changes in geometrical preference result from the energy gain when optimum ligand-ligand distances (2.9 Å for Li…Li and 3.3 Å for Na…Na) are achieved. While the metal-metal distances are nearly optimum in the D_{3h} structures of Li₃O and Na₃O, lower symmetries are adopted by Li₂F and Na₂Cl (C_{2v} and not $D_{\infty h}$), Li₃S (C_{3v} and not D_{3h}), and Li₄P (C_{2v} and not T_d) in order to optimize the bonding ligand-ligand interactions.

Acknowledgment. This work was facilitated by the Alexander von Humboldt Fellowship to A.I.B. and was supported by the Fonds der Chemischen Industrie, the Stiftung Volkwagenwerk, the Deutsche Forschungsgemeinschaft, and the Convex Computer Corp. We thank Prof. H. Kudo and Prof. C. H. Wu for sharing their unpublished experimental results.

⁽³⁸⁾ Huber, K. P.; Herzberg, G. Molecular Spectra and Molecular Structure; Van Nestrand Reinhold: New York, 1979.
(39) Wagman, D. D.; Evans, W. H.; Parker, V. B.; Schumm, R. H.; Halow,

⁽³⁹⁾ Wagman, D. D.; Evans, W. H.; Parker, V. B.; Schumm, R. H.; Halow, I.; Bailey, S. M.; Churney, K. L.; Nuttall, R. L. The NBS Tables of Chemical Thermodynamics Properties. J. Phys. Chem. Ref. Data 1982, 11, Suppl. 2.